Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A series of dramatic oceanic and atmospheric events occurred in the immediate aftermath of the Marinoan “snowball Earth” meltdown ∼635 My ago. However, at the 10- to 100-ky timescale, the order, rate, duration, and causal-feedback relationships of these individual events remain nebulous. Nonetheless, rapid swings in regional marine sulfate concentrations are predicted to have occurred in the aftermath of a snowball Earth, due to the nonlinear responses of its two major controlling fluxes: oxidative weathering on the continents and pyrite burial in marine sediments. Here, through the application of multiple isotope systems on various carbon and sulfur compounds, we determined extremely 13 C-depleted calcite cements in the basal Ediacaran in South China to be the result of microbial sulfate reduction coupled to anaerobic oxidation of methane, which indicates an interval of high sulfate concentrations in some part of the postmeltdown ocean. Regional chemostratigraphy places the 13 C-depleted cements at the equivalent of the earliest Ediacaran 17 O-depletion episode, thus confining the timing of this peak in sulfate concentrations within ∼50 ky since the onset of the deglaciation. The dearth of similarly 13 C-depleted cements in other Proterozoic successions implies that the earliest Ediacaran peak in marine sulfate concentration is a regional and likely transient event.more » « less
-
null (Ed.)Abstract The global deposition of superheavy pyrite (pyrite isotopically heavier than coeval seawater sulfate in the Neoproterozoic Era and particularly in the Cryogenian Period) defies explanation using the canonical marine sulfur cycle system. Here we report petrographic and sulfur isotopic data (δ34Spy) of superheavy pyrite from the Cryogenian Datangpo Formation (660–650 Ma) in South China. Our data indicate a syndepositional/early diagenetic origin of the Datangpo superheavy pyrite, with 34S-enriched H2S supplied from sulfidic (H2S rich) seawater. Instructed by a novel sulfur-cycling model, we propose that the emission of 34S-depleted volatile organosulfur compounds (VOSC) that were generated via sulfide methylation may have contributed to the formation of 34S-enriched sulfidic seawater and superheavy pyrite. The global emission of VOSC may be attributed to enhanced organic matter production after the Sturtian glaciation in the context of widespread sulfidic conditions. These findings demonstrate that VOSC cycling is an important component of the sulfur cycle in Proterozoic oceans.more » « less
-
It has been hypothesized that the overall size of—or efficiency of carbon export from—the biosphere decreased at the end of the Great Oxidation Event (GOE) (ca. 2,400 to 2,050 Ma). However, the timing, tempo, and trigger for this decrease remain poorly constrained. Here we test this hypothesis by studying the isotope geochemistry of sulfate minerals from the Belcher Group, in subarctic Canada. Using insights from sulfur and barium isotope measurements, combined with radiometric ages from bracketing strata, we infer that the sulfate minerals studied here record ambient sulfate in the immediate aftermath of the GOE (ca. 2,018 Ma). These sulfate minerals captured negative triple-oxygen isotope anomalies as low as ∼ −0.8‰. Such negative values occurring shortly after the GOE require a rapid reduction in primary productivity of >80%, although even larger reductions are plausible. Given that these data imply a collapse in primary productivity rather than export efficiency, the trigger for this shift in the Earth system must reflect a change in the availability of nutrients, such as phosphorus. Cumulatively, these data highlight that Earth’s GOE is a tale of feast and famine: A geologically unprecedented reduction in the size of the biosphere occurred across the end-GOE transition.more » « less
An official website of the United States government
